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The stationary probability distribution of the one-step process corresponding to 
Einstein's theory of absorption and emission of radiation is derived. Gauss' 
principle is used to identify the entropy, and the second law gives the dynamical 
equilibrium condition or Planck's radiation law. This condition is in disagreement 
with Einstein's criterion of dynamical equilibrium. The physical consequences 
Of the new condition are investigated. 

1. I N T R O D U C T I O N  

Einstein (1917) had the great physical intuition of  attempting a deriva- 
tion of  Planck's radiation law from a physical mechanism of absorption 
and emission of  radiation. This avoided any mention of the connection 
between entropy and the logarithm of the negative binomial coefficient, 
which was rationalized by Ehrenfest and Kamerlingh Onnes (1914) as the 
number  of  ways of permutating the number  of  "energy grades" (quanta) 
and "dividers" separating the individual oscillators. 

Crucial to Einstein's argument were the assumptions of  a dynamical 
equilibrium between the rates of  absorption and emission of radiation and 
that the molecules satisfy Maxwell-Boltzmann statistics. However, Einstein 
had three unknown coefficients, the absorption, stimulated, and spontaneous 
emission coefficients, with only a single relation, representating dynamical 
equilibrium, among them. In order to eliminate one of the unknowns, 
Einstein took the asymptotic high-temperature limit, from which he con- 
cluded that the coefficients of  absorption and stimulated emission are equal 
in the case that the statistical weights (which are numbers, independent of  
the temperature) of  the two states are equal. The ratio of  the two remaining 
coefficients could then be identified with the corresponding term in Planck's 
law, representing the number  of  oscillators between the frequencies u and 
u +  dr. 
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Einstein avoided both Boltzmann's combinatorial argument relating 
the entropy to the " thermodynamic" probability and the second law by 
postulating a dynamical equilibrium between the rates of absorption and 
emission of  radiation at equilibrium. However, Einstein's condition of 
dynamical equilibrium must necessarily be compatible with the second law. 
In fact, Boltzmann's procedure can be circumvented, at the cost of relin- 
quishing the  assumption of  a priori  probability, by solving the one-step 
master equation for the stationary probability distribution and showing that 
this distribution satisfies Gauss' principle, which chooses that distribution 
for which the most likely and average value coincide. The potential appear- 
ing in Gauss' expression for the probability distribution is the entropy of 
the process (Lavenda, 1988). The second law then establishes the criterion 
for dynamical equilibrium which is comparable to Einstein's condition. 
Noticing a discrepancy between the two relations, I derive the diffusion 
coefficient entering into the dynamic equilibrium between the (unsystematic) 
force of the radiation pressure on the electron which causes it to accelerate 
and (systematic) force arising from the reaction of the radiation field tending 
to slow the particle down because the energy radiated by a moving charge 
causes a decrease in its kinetic energy. The motion is influenced by the 
radiation field and conservation of energy dictates that we have to consider 
the reaction of the field on the moving charge (e.g., Heitler, 1954). 

Einstein's strong attraction to Brownian motion (Einstein, 1905) led 
Einstein and Hopf  (1910) to apply the same type of dynamical equilibrium 
that exists between the osmotic pressure forces and an arbitrary external 
force that resists the motion of the Brownian particle. With the condition 
of dynamic equilibrium formulated in velocity rather than configuration 
space, Einstein and Hopf  concluded that the momentum fluctuations calcu- 
lated using the equipartition law were far too small to account for the 
observed fluctuations, especially at high frequencies. The same type of  
equipartition law was used by Planck (1899) in equating the rates at which 
energy is emitted and absorbed by an oscillator under equilibrium condi- 
tions. The difficulty occurs in the region of high frequencies or low tem- 
peratures (Einstein, 1906), where considerations based on the law of 
equipartition that are valid at low frequencies and moderate temperatures 
predict that the rate of absorption, as well as the intensity of the electromag- 
netic field, should tend to zero (i.e., Wien's law) with the temperature. The 
aim of  this paper is to show that it is precisely the correction to Einstein's 
condition of  dynamic equilibrium that leads to a zero-point energy implying 
a finite rate of energy absorption and a finite pressure at very low tem- 
peratures or high frequencies. Curiously enough, the same zero-point energy 
was proposed by Einstein and Stern (1913) in their arguments for the 
existence of  molecular agitation at zero K. 
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2. D E R I V A T I O N  OF T H E  PROBABILITY D I S T R I B U T I O N  

Einstein (1917) derived Planck's radiation law by considering a physical 
mechanism of  emission and absorption of  radiation by matter. I will now 
derive the probability distribution which gives rise to that law and in so 
doing show that the assumption of a priori probabilities is untenable. The 
entropy will subsequently be identified using Gauss'  principle for the deriva- 
tion of the normal error law (Lavenda, 1988). 

Following Einstein (1917), we consider the simplified case of absorption 
and emission of radiation between two levels. The rate of absorption of 
radiation is proportional to the number of  photons, Or(n) = an, while the 
rates of  stimulated and spontaneous emission are given by Og(n) =/3n + y, 
where the term independent of n describes spontaneous emission. The 
master equation is 

j ' (n) = { ( J - -  1)ten -4- ( ~ - l  _ 1)(/3n + y)}f(n) (1) 

where the "step operators" f f  and ~--1 act on an arbitrary function 
~o(n) to give ff'q~(n) = ~(n + 1) and ff--l~(n) = ~(n - 1), respectively (e.g., 
van Kampen, 1981). The stationary solution f s  of the master equation (1) 
satisfies 

otnfS(n) = [/3(n - 1) + y]f~(n - 1), (2) 

provided there is no net probability flow from n ~  n - 1  (i.e., detailed 
balance). The stationary solution has the form of a negative binomial 
distribution 

f ' (n; m,p)=(m+ nn + l)pmq" (3) 

Introducing the distribution (3) into condition (2) yields ct(m+ n -  1)q = 
/ 3 ( n - 1 ) +  3,, which must be satisfied identically for all values of n. This 
requires that q=~/a  and m = y/~. The former implies that ce >/3, since 
p = ( ~ - / 3 ) / ~ .  

Two points are worth noting; first, according the traditional interpreta- 
tion (Ehrenfest and Kamerlingh Onnes, 1914), m represents the number of 
"cells" or "oscillators," which must necessarily be a positive integer. We 
have set this equal to the ratio of  rate constants of spontaneous and 
stimulated emission, which need not be an integer. In fact, the normalizing 
condition 

E fS(n; m , p ) =  1 (4) 
n = O  
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holds for any positive m. Second, existence of an asymptotic stationary 
solution 

,~ '= ~' (5) 
c~-/3 

to the average equation of motion 

r~ = - a ~  +/3r~ + y (6) 

depends upon the same condition that p > 0, namely ce >/3, which requires 
the rate of  absorption of  radiation to be greater than the rate of  stimulated 
emission. The three relations for m, p, and a s give ~ ' / m  = q/p, from which 
it follows that p = m / ( m + ~  s) and q = ~ ' / (m+~S) .  

3. GAUSS'  P R I N C I P L E  AND THE S EC OND LAW 

Gauss (1963), in deriving the normal law of error, assumed that the 
arithmetic mean of the measurements is the most probable value of the 
quantity measured. Since the normal law is symmetrical (positive and 
negative errors of  the same absolute magnitude are equally likely), the mode 
and the mean of the distribution are identical. I further assume that the 
arithmetic mean of the measurements coincides with the mean of the 
distribution, which is rigorously so when the number  of  measurements 
increases without limit. By Gauss '  principle I shall mean that the distribution 
should be chosen such that the expected value is the most likely value. 

Let f~(n; ~ )  denote the probability that a measurement will give the 
value n whose true value is known to be ~s, its average value, which 
according to assumption coincides with its most probable value. In order 
to determine the law of  error, observe that (Keynes, 1921) ( 1 / f  ~) Ofs/O~ ~ = 0 
must be equivalent to n - ~s = 0. Therefore, 

0 l n f  
O-~- T = tp (r~)(n - ~ )  (7) 

where ~(t~ s) is some function that is independent of  n. Integrating (7) gives 

ln fS(n ;  ~ )  = - ( n  - ~ )  a ~  ~ - O~ ") + E ( n )  (8) 

where E(n)  is some function independent of  t~ ~. I have set ~ = -025~/a~ s2, 
where 5 ~ is some "potent ial"  function whose existence can be rigorously 
demonstrated in the multidimensional case where the exactness conditions 
must be satisfied. 
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I now show that the negative binomial distribution (3) is a law of  error 
leading to the average value as the most probable value. Taking the logarithm 
of  (3) and expressing it in the form of (8), let us identify the potential as 

~(~=) = (m + ~=) ln(r~ = + m) - ~= In r~ = - m In m (9) 

which is easily recognized as the (statistical) entropy. For n and m 
sufficiently large to justify the use o f  Stirling's approximation, the last term 
in expression (8) becomes 

~(n)  = ( m + n )  l n ( m + n ) - n  In n - m  In m (10) 

which I have referred to as the "stochastic" entropy (Lavenda, 1988). 
Furthermore, the expectation value fi= maximizes the distribution since 

( 02Se~ m _ ( m j )  -I 

where tr~ is the variance of  the negative binomial distribution. 
In addition to the average number of particles, the (thermodynamic) 

entropy is a function of  the volume V and average energy ~, which, if the 
particle energy is e, is given by ~ = ~=e. Then, at constant volume, 

where /z is the chemical potential and the absolute temperature T is 
measured in energy units. If the system is in thermal equilibrium with the 
heat bath at temperature T, then the derivative of the thermodynamic 
entropy, given in (11), will be equal to the derivative of  the statistical entropy, 

OW _ l n (  m + W ~  a~ = \ - ~ - ; - -  / (12) 

which gives precisely the Bose-Einstein distribution 

m 
i = - ( 1 3 )  

e ( = - g ) / T  - -  1 

The Bose-Einstein distribution (13) can be expressed as 

/3= e_(=_~/T (14) 
O~ 

which corresponds, in Einstein's terminlogy, to a condition of "dynamical 
equilibrium." 

Since the number of  photons is not conserved, we must set/z = 0, and 
with e = h~, the dynamical equilibrium condition (14) becomes 

f l  - e - h ' /  T (15) 
OL 
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However, this dynamical equilibrium condition is at variance with Einstein's 
(1917) condition 

o~tY e -~,/r = (/3~" + 3') e -5,/r (16) 

equating the rates of absorption and emission of radiation between two 
states of equal statistical weight with energies ei and e s such that e; < e s and 
e s - e i  = hr. Equation (16) is a single condition with three unknowns. In 
order to eliminate one of the unknowns so that the remaining two would 
only appear in a ratio, Einstein took the limit as T ~  m. Since ri" goes to 
infinity with T, this gave the condition o~ =/3 in this limit, provided the 
numerical statistical weights for the two states are equal. Assuming that 
this equivalence would hold at any temperature, Einstein introduced it into 
his dynamical equilibrium condition (16) to obtain 

1 + a ' / m _  eh~l T (17) 
aS/m 

which is precisely Planck's distribution law where m = 3,/a. However, there 
is really no justification for introducing the asymptotic equivalence between 
the coefficients of absorption and induced emission that has been obtained 
from (16) in the limit as T--> oo back into the same relation which is valid 
for finite T. Rather, the stationary state expression (5) together with (15), 
which has been derived from the second law, is sufficient to establish Planck's 
radiation law. 

The first relation between the Einstein coefficients that I have found 
is given by (15) and it is this relation which is at variance with the one 
found by Einstein except in the limit of low frequencies or high temperatures. 
The second relation, ~// f l=m, becomes y / /3=87rv2V/c  3 when m is 
identified as the number of oscillators between frequencies v and v + dr. 
According to Einstein, y//3 should be hv times my expression and 13 = 
in the case where the statistical weights of the two states are equal. Let us 
observe that only ratios can be obtained from thermodynamic arguments 
and those ratios should be independent of Planck's constant since they 
must be identical to the corresponding expressions of classical electrody- 
namics. 

With my values of the coefficients, the entropy (9), which is the total 
entropy of m oscillators at the equilibrium temperature T and in the 
frequency range dr, is 

5e(v,T)=--a--a  ln[----Z--a ~ -  /3 l n ( a _ - ~  ) ) 
a-/3 \ ~ - / 3 /  a-/3 

= 3 ' [  h v / T  ln ( l_e_h~/r ) ]  (18) 
/3 e h~/T-1 
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The average energy per unit volume in the same frequency range is 

3' hu  (19) 
~(~,)  = ~ h v  = f l e h u /  T - -  1 

so that the difference between (18) and T -1 times (19) is 

In ~(~, T) = - ~  In(1 - e - h ~ / r )  (20) 

where ~ is the partition function. 

4. DYNAMICAL EQUILIBRIUM AND THE DIFFUSION 
COEFFICIENT 

The equation of motion (6) is the average of the stochastic differential 
equation 

dn  = { y - ( a - f l ) n }  d t + d W  (21) 

where W is a Brownian motion, with zero mean and variance d W  2 = D dt. 

The Brownian motion accounts for the statistical aspects of the radiation 
pressure and D is the diffusion coefficient which I seek to determine. Since 
the variance 

c r 2 = ( n - ~ )  2 

I can employ equation (21) to obtain its equation of motion as 

1 do -2 
(0r -- ,8)0"2+0 (22) 

2 d t  

In the asymptotic limit as t-->oo we get D =  (a  -/~)o'2(fis),  where the 
asymptotic value of the variance is [cf. the expression following (10)] 

~r2( ~ ~) = m q /  p 2 = ~s(  ~S /  m + 1) (23) 

It will be appreciated that 

D = a~ ~ Y 1 - e - h ~ / r  (24) 

is the fluctuation-dissipation theorem for Gaussian Markov processes (e.g., 
Lavenda, 1985). At low frequencies, the diffusion coefficient (24) becomes 

D = y T / h u  (25) 

Since the fluctuations are now classical, equation (25) must be independent 
of  Planck's constant. According to classical electrodynamics, the linear 
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harmonic oscillator equation, acting as a simple model for a light source, 
with a reaction force is (Heitler, 1954) 

M~ 2 2e2 2 (26) 
= - M w  X +3c---- 5 

where e is the electric charge, M is the mass of the electron, and w = 2try. 
If  the reaction force is small with respect to the elastic force, then, in first 
approximation, 2 - - w 2 2 .  Thus, radiation damping will be described by 
the equation of motion 2 + y 2 + w Z x = 0 ,  where y=2e2w2/3Mc3 is the 
linewidth at half maximum, which is just equal to the total spontaneous 
transition probability per unit time (Heitler, 1954). Inserting this value into 
the expression for the diffusion coefficient gives 

2 T 
D = ~ ff~c~c 2 o) (27) 

where ~ = e2/hc is the fine-structure constant into which Planck's constant 
has been incorporated. 

In order to obtain the value of the coefficient rn, Planck (1899) equated 
the rates at which energy is emitted and absorbed by an oscillator at 
equilibrium. The rate of  energy absorption ga - (e2/Mc)~r where or - cE 2 
is the intensity and E is the electric field strength. The classical rate of 
radiation by a harmonic oscillator is ge ~ (e2w2/Mc 3) g / m ,  where g / m  = 
Mo92x 2 is the average energy per oscillator. Equating the rates of emission 
and absorption of radiation gives E 2~ (w2/c3)g/rn  and since g - E  2, it 
follows that m ~ w2/c 3, which becomes precisely Planck's result when we 
introduce a factor of 2/7r. Since the damping constant y - ( e 2 w 2 / M c 3 ) ,  it 
follows that fl ~ ( e 2 / M )  and from (15) that c e -  ( e 2 / M )  e h'/r. Notice that 
I have used the equipartition law to obtain the functional dependence of  
m on the frequency. However, in the opposite limit of high frequencies or 
low temperatures, the adherence to the same relation would predict that 
the intensity approaches zero and so does the rate of energy absorption. 

The total energy radiated per unit time is the average rate at which 
photons are emitted Og(r~ s) multiplied by the energy per quantum hv, 

yhv 
~e = ( y +  fl~S)hv = yhv+ ~ - 1 - e -hv/r (28) 

In comparison, the average rate of spontaneous emission is 

~ e  = 'Y - -  e h ~ / r  - 1 ( 2 9 )  

where the first equality is identical to the average monochromatic radiation 
emitted by an oscillator of classical theory when g'/rn is identified with 



Einstein's Theory of Quantum Radiation 627 

twice the average potential energy of the harmonic oscillator (Heitler, 1954). 
Although both expressions (28) and (29) reduce to 

~e = ~,r (30) 

in the low-frequency limit, they differ decisively in the high-frequency limit, 
where (28) becomes 

~e = yhv (31) 

while (30) goes over into 

~:e = yhv e -h~/r (32) 

which is what would be predicted from Wien's law, and vanishes either in 
the high-frequency or low-temperature limit. 

To obtain the average rate of absorption of energy, we multiply the 
average rate at which quanta are absorbed, O,.(ti'), by the energy per 
quantum. This gives 

1 - e  -h~/r (33) 

in contrast to what Einstein would have predicted, 

yhv (34) 
~ , ~ = ~ - e m , / r _ l  

on the basis of the assumed equivalence of the coefficients of absorption 
and induced emission. Both expressions (33) and (34) give the equipartition 
result 

~a = ~,T (35) 

in the low-frequency limit but differ in the high-frequency limit: whereas 
(33) goes over into (31), the average energy absorbed per unit time given 
by (34) vanishes in the limit as T +  0. In this limit all oscillators should be 
in their ground state, so that there indeed exists the possibility of energy 
absorption. This is to be attributed to the addition of a zero-point energy, 
equal to hv, in expression (28) which appears in the spontaneous emission 
term. The result was anticipated by Einstein and Stern (1913), who noted 
that it enabled Planck's radiation law to be derived "without the usual 
discontinuity assumptions." The existence of such a zero-point energy is 
due to the thermal equilibrium between absorption and induced emission 
which is expressed by relation (15). 

Following Einstein and Hopf (1910), I consider a dynamical equili- 
brium between the "damping" force 

= - M y v  (36) 
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where v is the velocity of the oscillator in the x direction and an "osmotic" 
pressure force originating in the statistical fluctuations of the radiation 
pressure. I am therefore led to the velocity space diffusion equation 

Ot Ov 

which is to be solved for its stationary probability density f s  satisfying 

under the condition of detailed balance. 
Einstein (1917) and Einstein and Hopf (1910) did not question the 

validity of the Maxwell distribution law since the resulting equipartition 
law is only applied to translatory motion, for which "this law was always 
brillantly corroborated" (Einstein and Hopf, 1910). With the stationary 
distribution given by 

1 -M~V2r (39) 
f ' ( v )  = (2zrT/ M)I/2 e 

the dynamical equilibrium condition (38) yields 

~Zin = TT (40) 

Expression (40) is the Einstein diffusion coefficient for Brownian motion 
(Einstein, 1905) applied to fluctuations in electromagnetic momentum. 
Einstein and Hopf (1910) concluded that this value is far too small compared 
with real momentum fluctuations, especially when very high frequencies 
are involved. 

According to the equipartition law, T is the average energy per oscil- 
lator, ~ /m,  so that 

@Ein = 3 ~  (41) 

since 3,/m = 3- However, on the basis of the fluctuation-dissipation theorem 
(24), I obtain 

@ = ag7 (42) 

which would only coincide with Einstein's expression for frequencies satisfy- 
ing hv << T. An interesting comparison between the two diffusion coefficients 
can be drawn from the theory of Brownian motion. Let A be the momentum 
due to the irregular radiative interactions transmitted to harmonically bound 
electrons of frequency v in a small time interval r. This counteracts the 
radiative force M3,v opposing the motion. According to the Brownian 
motion phenomenon, ~ @~-, expression (42) for the diffusion coefficient 
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in momentum space predicts that the mean square deviation in the momen- 
tum fluctuations is 

A 2 = fl~" (43) 

Alternatively, according to the Einstein relation (41), which implicitly 
implies the equivalence of a and/3, I would get 

A2 =/3~Zo (44) 

The two expressions differ in their definition of the characteristic times 
involved: whereas ~'o = 1/~, is the period of free vibrations, the time interval 
r is the mean lifetime of the oscillator prior to absorbing a quantum of 
energy. The two characteristic times are related by 

r = ~o e h~/r (45) 

where the exponential factor can be interpreted as the average number of 
oscillations prior to absorbing a quantum of energy hr. 

I now invert Einstein's procedure: given the fluctuation-dissipation 
theorem (42), equation (38) is to be solved for the stationary probability 
density. I thus obtain 

[ M ( 1 - - e - h ~ / r ) ]  1/2 { 1 M v 2 ( 1 - - e - h " / r ) }  (46) 
f S ( v )  = L ~ exp - ~  h----~ 

In other words, on the strength of the fluctuation-dissipation condition (42) 
and the condition of a dynamical equilibrium between the radiation damping 
and the statistical fluctuations produced by the radiation pressure (38), I 
am led to a modification of the Maxwell velocity distribution (39). It leads 
to the prediction that twice the average kinetic energy of the oscillator is 

- -  hv 
M y 2  - 1 - e -h~/T (47) 

which for low frequencies goes over into the equipartition law 

MI )  2 =  T (48) 

while for high frequencies there results 

M v  2= hv (49) 

This is precisely the zero-point energy in the expression 

hv 
- -  + h v  (50) 

m e hv/T -- 1 

proposed by Einstein and Stern (1913) and which is responsible for 
molecular agitation at zero K. 
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The pressure per unit volume, given by the well-known kinetic theory 
expression 

p = ( m / 3 ) M v  2 (51) 

would vanish if the average kinetic energy were equated to Planck's 
expression (19) in the limit as T-~0, while if it were given by (47), I would 
find 

p =�89 =�89 (52) 

in the same limit. This is the well-known relation for a photon gas, which 
differs from the usual relation p = ~ for a gas of  material particles. 

Finally, the criterion for the valdity of the electrodynamic analysis of  
the radiation pressure is simply 

A2<< M y  2 (53) 

Upon inserting (43) and (47) into inequality (53), I get 

y << v (54) 

where I have set r0 = 1/v, the period of the free vibrations. This expresses 
the fact that the lifetime 1 /y  of the oscillator is long compared to one 
period, for otherwise the motion would not even be approximately periodic 
(Heitler, 1954). The same criterion is obtained when the Einstein relation 
(44) is used in conjunction with the equipartition law M y  2= T in the 
low-frequency limit. However, for high frequencies or low temperatures it 
would give a condition involving the temperature and this is foreign to 
either the classical or quantum theory of natural line breadth caused by 
damping resulting from the emission of radiation. 
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